A functional limit theorem for the profile of random recursive trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Functional Limit Theorem for The Profile of Search Trees

We study the profile Xn,k of random search trees including binary search trees and m-ary search trees. Our main result is a functional limit theorem of the normalized profile Xn,k/EXn,k for k = bα lognc in a certain range of α. A central feature of the proof is the use of the contraction method to prove convergence in distribution of certain random analytic functions in a complex domain. This i...

متن کامل

Limit distribution of the degrees in scaled attachment random recursive trees

We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...

متن کامل

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

The Subtree Size Profile of Bucket Recursive Trees

Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...

متن کامل

A Functional Limit Theorem for the Profile of Search Trees by Michael Drmota,1 Svante Janson

We study the profile Xn,k of random search trees including binary search trees and m-ary search trees. Our main result is a functional limit theorem of the normalized profile Xn,k/EXn,k for k = α logn in a certain range of α. A central feature of the proof is the use of the contraction method to prove convergence in distribution of certain random analytic functions in a complex domain. This is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Communications in Probability

سال: 2018

ISSN: 1083-589X

DOI: 10.1214/18-ecp188